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Plan

1. Review of divergences in string theory

2. Use of string field theory in removing divergences.

3. Structure of string field theory

4. More applications

Superstring ≡ heterotic or type II strings

(includes compactified theories with non-trivial NS
background)
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In string theory the observables are S-matrix
elements.

The prescription for computing S-matrix is apparently
different from that in quantum field theories.

g-loop, N-point amplitude:∫
dm1 · · ·dm6g−6+2N F(m1, · · ·m6g−6+2N)

{mi} parametrize moduli space of two dimensional
Riemann surfaces of genus g and N marked points.

F({mi}): some correlation function of a two
dimensional conformal field theory on the Riemann
surface.
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The closest comparison between string theory
amplitudes and field theory amplitudes can be made
in Schwinger parameter representation of the latter

(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

1. Replace each propagator by this in the Feynman
amplitude.

2. Carry out the loop momentum integrals since they
are gaussian integrals.

Result ∫
ds1 · · ·dsnf(s1, · · · sn)

mi’s resemble si’s and F resembles f.
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Field theory (contd)

Ultraviolet (UV) divergence⇔ large loop momentum.

Infrared (IR) divergence⇔ vanishing k2 + m2.

(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

After integration over the momenta, we cannot
classify UV and IR divergences as coming from large
and small momenta.

Dictionary:

1. UV divergences come from s→ 0

2. IR divergences come from s→∞
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Divergences in string theory are associated with
degenerate Riemann surfaces

Resembles Feynman diagrams with a large s
propagator

Under {mi} ⇔ {sj} identification, the size of the small
cycle near degeneration goes as e−s.

Degeneration⇒ s→∞⇒ IR divergence
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This shows that string theory is free from ultraviolet
divergences but suffers from infrared divergences

Sources of infrared divergence in string theory can
be understood from the divergences in field theory
amplitudes in large s limit
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(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

1. For k2 + m2 < 0, l.h.s. is finite but r.h.s. diverges

– can be dealt with in quantum field theory by
working directly with l.h.s.

– in conventional string perturbation theory these
divergences have to be circumvented via analytic
continuation / deformation of moduli space
integration contours D’Hoker, Phong; Berera; Witten; · · ·
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(k2 + m2)−1 =

∫ ∞
0

ds e−s(k2+m2)

2. For (k2 + m2) = 0, l.h.s. and r.h.s. both diverge.

– present in quantum field theories e.g. in external
state mass renormalization and massless tadpole
diagrams

– have to be dealt with using renormalized mass and
correct vacuum.

In standard superstring perturbation theory these
divergences have no remedy. 9



Superstring field theory is a quantum field theory
whose amplitudes, computed with Feynman
diagrams, should have the following properties:

1. They agree with standard superstring amplitudes
when the latter are finite

2. They agree with analytic continuation of standard
superstring amplitudes when the latter are finite
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3. They formally agree with standard superstring
amplitudes when the latter have genuine divergences,
but · · ·

· · · in superstring field theory we can deal with these
divergences using standard field theory techniques
like mass renormalization and shift of vacuum.
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Does such a theory exist?

For bosnic strings, there is such a field theory Zwiebach

For superstrings there is an apparent no go theorem.

If we can construct an action for type IIB superstring
theory then by taking its low energy limit we should
get an action for type IIB supergravity

– known to be not possible due to the existence of a
4-form field with self-dual field strength.

Therefore construction of an action for type IIB
superstring theory should be impossible.
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Resolution

It is possible to construct actions for heterotic and
type II string field theory, but the theory contains an
additional set of particles which are free.

These additional particles are unobservable since
they do not scatter.

Note: For classical open superstring field theory
there are other approaches.

Kunitomo, Okawa; Erler, Konopka, Sachs; Erler, Okawa, Takazaki; Konopka, Sachs; · · ·
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Structure of the action A.S.

Two sets of string fields, ψ and φ

Each is an infinite component field, represented as a
vector

Action takes the form

S =

[
−1

2
(φ,QXφ) + (φ,Qψ) + f(ψ)

]
Q, X: commuting linear operators

(,): Lorentz invariant inner product

f(ψ): a functional of ψ describing interaction term. 14



Some technical details (for heterotic string)

S =

[
−1

2
(φ,QXφ) + (φ,Qψ) + f(ψ)

]
ψ has picture numbers (−1,−1/2) in (NS,R) sectors

φ has picture numbers (−1,−3/2) in (NS,R) sector

Q: BRST operator

X: (Identity, zero mode of PCO) in the (NS, R) sectors.

f(ψ): given by an integral over subspace of moduli space of
Riemann surfaces

Integrand: correlation function of ψ states, PCO’s, ghosts etc.

The subspace never includes degenerate Riemann surfaces. 15



S =

[
−1

2
(φ,Q Xφ) + (φ,Qψ) + f(ψ)

]
Equations of motion:

Q(ψ − Xφ) = 0

Qφ + f′(ψ) = 0

first + X × second equation gives

Qψ + X f′(ψ) = 0

ψ describes interacting fields

Rest of the independent degrees of freedom describe
decoupled free fields.
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This action has infinite dimensional gauge invariance

– can be quantized using Batalin-Vilkovisky formalism

1. Gauge fix

2. Derive Feynman rules

3. Compute amplitudes
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If we use Schwinger parameter representation of the
propagators then the Feynman amplitudes for ψ
reproduce the usual string theory amplitudes.

Each diagram represents integration over part of the
moduli space of Riemann surfaces.

Sum of all diagrams gives integration over the full
moduli space.

Rest of the degrees of freedom decouple and will be
irrelevant for our analysis.
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Such an amplitude will have the usual divergences of
string perturbation theory.

All such divergences now come in the limit when one
or more Scwinger parameters become large

– usual IR divergences in quantum field theories

However since we have an underlying field theory, we
can deal with these divergences following the usual
procedure of a field theory.



1. Find 1PI effective action.

2. Find the extremum of this action.

3. Find solutions of linearized equations of motion
around the extremum to find renormalized masses.

4. Compute S-matrix using LSZ formalism.
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More details on the amplitudes

The tree level propagators have standard form in the
‘Siegel gauge’

(L0 + L̄0)−1 X b0 b̄0 δL0,L̄0

In momentum space

(k2 + M2)−1 × polynomial in momentum

The polynomial comes from matrix element of X b0 b̄0.
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k1 k2

k3kn · · ·

Vertices are accompanied by a suppression factor of

exp

[
−A

2

∑
i

(k2
i + m2

i )

]
A: a positive constant that can be made large by a
non-linear field redefinition (adding stubs). Hata, Zwiebach

This makes

– momentum integrals UV finite (almost)

– sum over intermediate states converge
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Momentum dependence of vertex includes

exp

[
−A

2

∑
i

(k2
i + m2

i )

]
= exp

[
−A

2

∑
i

(~k
2
i + m2

i ) +
A
2

(k0
i )2

]

Integration over ~ki is convergent for large ~ki, but
integration over k0

i diverges at large k0
i .

The spatial components of loop momenta can be
integrated along the real axis, but we have to treat
integration over loop energies more carefully.
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Resolution: Need to have the ends of loop energy
integrals approach ±i∞.

In the interior the contour has to be deformed away
from the imaginary axis to avoid poles from the
propagators.

We shall now describe in detail how to choose the
loop energy integration contour.
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General procedure: Pius, A.S.

1. Multiply all external energies by a complex number
u.

2. For u=i, all external energies are imaginary, and we
can take all loop energy contours to lie along the
imaginary axis without encountering any singularity.

3. Now deform u to 1 along the first quadrant.

4. If some pole of a propagator approaches the loop
energy integration contours, deform the contours
away from the poles, keeping their ends at ±i∞.
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Complex u-plane

u-plane

With this definition the amplitude develops an
imaginary part which is normally absent in
superstring perturbation theory before analytic
continuation.
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Result 1: Such deformations are always possible as
long as u lies in the first quadrant

– the loop energy contours do not get pinched by
poles approaching each other from opposite sides.

Result 2: The amplitudes computed this way satisfy
Cutkosky cutting rules Pius, A.S.

– relates T− T† to T†T S = 1 - i T

– proved by using contour deformation in complex
loop energy plane 26



This is a step towards proof of unitarity but not a
complete proof

In T† T = T†|n〉〈n|T, the sum over intermediate states
runs over all states in Siegel gauge.

Desired result: Only physical states should
contribute to the sum.

This can be proved using the quantum Ward identities
of superstring field theory A.S.

– requires cancellation between matter and ghost
loops
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The proof of unitarity takes into account

1. Mass and wave-function renormalization effects
and lifting of degeneracy

2. The fact that some (most) of the string states
become unstable under quantum corrections.

3. The possible shift in the vacuum due to quantum
effects.

It does not take into account the infrared divergences
from soft particles arising in D ≤ 4.

(String field theory version of Kinoshita, Lee,
Nauenberg theorem has not yet been proven.)
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An example:

Consider two fields, one of mass M and another of
mass m, with M>2m.

Consider one loop mass renormalization of the heavy
particle.

p p

k

p-k

Thick line: heavy particle Thin line: light particle.
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p p

k

p-k

δM2 = i
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 B(k)

B(k): a polynomial in momentum encoding additional
contribution to the vertices and / or propagators.

We shall work in ~p = 0 frame, and take p0 → M limit
from the first quadrant.
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δM2 = i
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 B(k)

Poles in the k0 plane (for ~p = 0):

Q1 ≡
√
~k

2
+ m2, Q2 ≡ −

√
~k

2
+ m2,

Q3 ≡ p0 +

√
~k

2
+ m2, Q4 ≡ p0 −

√
~k

2
+ m2

For p0 imaginary, take k0 contour along imaginary
axis.

Q1,Q3 to the right and Q2,Q4 to the left of the
imaginary axis.
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Q1 ≡
√
~k

2
+ m2, Q2 ≡ −

√
~k

2
+ m2,

Q3 ≡ p0 +

√
~k

2
+ m2, Q4 ≡ p0 −

√
~k

2
+ m2

As p0 approaches real axis, the poles approach the real axis.

Two situations depending on the value of ~k.

x xx xQ2 Q1Q4 Q3
x x x xQ2 Q1 Q4 Q3

Note: Q1,Q3 to the right and Q2,Q4 to the left of the contour in
both diagrams.
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x xx xQ2 Q1Q4 Q3
x x x xQ2 Q1 Q4 Q3

Complex conjugate contours giving (δM2)∗

x xx xQ2 Q1Q4 Q3
x x x xQ2 Q1 Q4 Q3

– can be deformed to each other without picking any
residue unless Q4 → Q1 putting both lines on-shell.

Residue given by Cutkosky rules. 33



The cut diagrams in string field theory will have some
unwanted terms

p p

k

p-k

Q|s〉 〈s′|

|r〉 〈r′|Q
p p

k

p-k

|s〉 〈s′|Q

Q|r〉 〈r′|

These two diagrams cancel using Ward identity.

All order proof of unitarity involves generalization of
this type of analysis

– takes into account quantum modification of the
BRST operator Q computed from 1PI effective action.
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String motivated approach: Evaluate the original integral using
Schwinger parametrization

exp[−A(k2 + m2)](k2 + m2)−1 =

∫ ∞
A

dt1 exp[−t1(k2 + m2)]

exp[−A((p− k)2 + m2)]((p− k)2 + m2)−1 =

∫ ∞
A

dt2 exp[−t2((p− k)2 + m2)]

For constant B, after doing momentum integrals (formally)

δM2 = −B (4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
– diverges from the upper end for M > 2m.

– can be traced to the impossibility of choosing energy
integration contour keeping Re(k2 + m2)>0, Re((p− k)2 + m2)>0.
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i B
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 finite

‘=’ −B (4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
divergent

More generally for a polynomial B, we have a polynomial P s.t.

i
∫

dDk
(2π)D exp[−A{k2 + m2} − A{(p− k)2 + m2}]

{k2 + m2}−1{(p− k)2 + m2}−1 B(k)

‘=’ −(4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
P(1/(t1 + t2), t2/(t1 + t2))
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Such divergences arise in actual computation of one
loop two point functions in heterotic and type II string
theories.

Using these ‘identities’ we can convert these
divergent expressions into finite expressions

– have both real and imaginary parts consistent with
unitarity.
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An alternative strategy Berera; Witten

Turn the upper limits of the ti integrals towards i∞
instead of∞

−(4π)−D/2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−D/2

exp
[

t1t2

t1 + t2
M2 − (t1 + t2)m2

]
P(1/(t1 + t2), t2/(t1 + t2))

becomes finite with this prescription for D > 4.

At one loop this prescription agrees with the
intergration rules over loop energies.

The status at higher loops is not clear yet.
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A specific example in string theory

One loop mass renormalization of the lowest massive
state on the leading Regge trajectory in the heterotic
string theory

Need to compute torus two point function of on-shell
states
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On shell two point function gives

δM2 = − 1
32π

M2 g2
∫

d2τ

∫
d2z F(z, z̄, τ, τ̄) ,

F(z, z̄, τ, τ̄) ≡

{∑
ν

ϑν(0)16

}
(η(τ))−18(η(τ))−6(ϑ′1(0))−4

(
ϑ1(z)ϑ1(z)

)2

(ϑ′1(z)

ϑ1(z)

)2

−
ϑ′′1 (z)

ϑ1(z)
− π

τ2

2

exp[−4π z2
2/τ2] (τ2)−5 ,

z = z1 + i z2 ∈ torus, τ = τ1 + iτ2 ∈ fundamental region

ϑ1, · · ·ϑ4: Jacobi theta functions η: Dedekind function

40



For large z2 and τ2 − z2, F has a growing part

2 (2π)−4
(

32π4 − 32
π3

τ2
+ 512

π2

τ2
2

)
exp[4πz2 − 4πz2

2/τ2] τ−5
2

⇒ divergent integral.

Divergent part after using t1 = πz2, t2 = π(τ2 − z2)

J = −2−3π2 M2
∫ ∞

A
dt1

∫ ∞
A

dt2 (t1 + t2)−5(
1− 1

(t1 + t2)
+ 16

1
(t1 + t2)2

)
exp

[
4

t1t2

t1 + t2

]

A: arbitrary constant

J is divergent, but the integral matches the one we analyzed
before for field theory with m=0, M=2
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Strategy (can be justified using string field theory):

Use the previous ‘identities’ to replace J by the
momentum space integral

J = i (2π)7M2g2
∫

d10k
(2π)10 exp[−Ak2 − A(p− k)2]

(k2)−1 {(p− k)2}−1 {1− 2 (k1)2 + 64 (k1)2 (k2)2}

– finite integral once we choose the integration
contour for energy integral following the procedure
described earlier.

To this we add the finite part which is given by usual
integral over moduli space with the divergent part
subtracted.

Final result gives finite real and imaginary parts in
accordance with unitarity.
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Summary

Covariant superstring field theory gives a Lorentz
invariant, ultraviolet finite and unitary theory.

Divergences associated with mass renormalization
and shift of vacuum can be dealt with as in
conventional quantum field theories.

It can also provide useful alternative to analytic
continuation that is often needed in conventional
superstring perturbation theory to make sense of
divergent results.
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